On Computing the Eigenvectors of Symmetric Tridiagonal and Semiseparable Matrices

نویسنده

  • Nicola Mastronardi
چکیده

A real symmetric matrix of order n has a full set of orthogonal eigenvectors. The most used approach to compute the spectrum of such matrices reduces first the dense symmetric matrix into a symmetric structured one, i.e., either a tridiagonal matrix [2, 3] or a semiseparable matrix [4]. This step is accomplished in O(n) operations. Once the latter symmetric structured matrix is available, its spectrum is computed in an iterative fashion by means of the QR method in O(n) operations. In principle, the whole set of eigenvectors of the latter structured matrix can be computed by means of inverse iteration in O(n) operations. The blemish in this approach is that the computed eigenvectors may not be numerically orthogonal if clusters are present in the spectrum. To enforce orthogonality the Gram-Schmidt procedure is used, requiring O(n) operations in the worst case. In this talk an alternative way of computing the eigenvectors of either symmetric tridiagonal matrices or symmetric semiseparable matrices, known the corresponding eigenvalues, is presented. The algorithm is based on the implicitly shifted QR algorithm. The computed eigenvectors are numerically orthogonal and the complexity of the algorithm is O(n) if clusters of small size are present in the spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On computing the eigenvectors of a class of structured matrices

A real symmetric matrix of order n has a full set of orthogonal eigenvectors. The most used approach to compute the spectrum of such matrices reduces first the dense symmetric matrix into a symmetric structured one, i.e., tridiagonal matrices or semiseparable matrices. This step is accomplished in O(n 3) operations. Once the latter symmetric structured matrix is available, its spectrum is compu...

متن کامل

An implicit QR algorithm for semiseparable matrices to compute the eigendecomposition of symmetric matrices

The QR algorithm is one of the classical methods to compute the eigendecomposition of a matrix. If it is applied on a dense n×n matrix, this algorithm requires O(n3) operations per iteration step. To reduce this complexity for a symmetric matrix to O(n), the original matrix is £rst reduced to tridiagonal form using orthogonal similarity transformations. In the report [Van Barel, Vandebril, Mast...

متن کامل

Homotopy algorithm for the symmetric diagonal-plus-semiseparable eigenvalue problem

A dense symmetric matrix can be reduced into a similar diagonalplus-semiseparable one by means of orthogonal similarity transformations. This makes such a diagonal-plus-semiseparable representation a good alternative to the tridiagonal one when solving dense linear algebra problems. For symmetric tridiagonal matrices there have been developed different homotopy eigensolvers. We present a homoto...

متن کامل

An O(N2 ) Method for Computing the Eigensystem of N ˟ N Symmetric Tridiagonal Matrices by the Divide and Conquer Approach

An efficient method to solve the eigenproblem of N x N symmetric tridiagonal matrices is proposed. Unlike the standard eigensolvers that necessitate O(N3) operations to compute the eigenvectors of such matrices, the proposed method computes both the eigenvalues and eigenvectors with only O(N2) operations. The method is based on serial implementation of the recently introduced Divide and Conquer...

متن کامل

Orthogonal similarity transformation of a symmetric matrix into a diagonal-plus-semiseparable one with free choice of the diagonal

It is well-known how any symmetric matrix can be transformed into a similar tridiagonal one [1, 2]. This orthogonal similarity transformation forms the basic step for various algorithms. For example if one wants to compute the eigenvalues of a symmetric matrix, one can rst transform it into a similar tridiagonal one and then compute the eigenvalues of this tridiagonal matrix. Very recently an a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004